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The Problem

B We collect a set of scans (high-dimensional
multivariate image vectors) with an unknown
spatio-temporal structure.

Each scan 1s acquired under one of a finite set of
experimental design conditions or brain states.

PROBLEM: How to determine the spatio-
temporal structure that “best” describes the
variation among these experimental brain
states?




The Philosophy

“I believe 1n 1gnorance based methods because
humans have a lot of 1ignorance and we should

play to our strong suit.”

Eric Lander
Whitehead Institute, M.I.T.

The field of statistical learning or machine learning provides a

coherent scientific approach for this viewpoint!

See: Machine Learning for Science: State of the art and future prospects.
E. Mjolsness & D. DeCoste. Science, 293:2051-2055, September, 2001
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Presentation Overview

m AIMS. Optimize functional neuroimaging results by
measuring internal result consistency and bias-variance
tradeoffs without relying on:

< Prior neuroscientific expectations, i.e., the neuroscientific-bias problem:;
< Inferential tests based on Maximum Likelihood (ML) parameter estimates.

B METHODS. NPAIRS Quality Metrics for Multiple PET Tasks:
< Prediction error in a flexible, multivariate, cross-validation framework;
< Statistical parametric map (SPM) reproducibility;
< Provide a data-driven alternative to ROC curves.
m RESULTS. BOLD-fMRI, within-subject, run-to-run comparisons as a
function of preprocessing:
< Exploratory canonical variates analysis (CVA) to establish signal subspace;
< Prediction vs. reproducibility plots as f(model complexity);
< Preprocessing optimization for group vs. individual subjects.

® CONCLUSIONS.




Why Test Internal Result Consistency?

(The Neuroscientific Bias Problem)

B Patterns of functional activation obtained from neuro-imaging studies
reflect interactions between choices of:

< Research question and activation task;
< Experimental design parameters;
< A complex series of data-analysis-chain choices including:
— Data acquisition and post-acquisition preprocessing;
— Data-analysis model selection and tunning model complexity.

m Generation of a plausible result 1s often taken as
justification for the choices made, leading to a systematic
bias in the field towards prevailing neuroscientific
expectations.
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Are Maximum Likelihood
Parameter Estimates Enough?

®m  Perhaps asymptotically, but:

< ML focuses on asymptotically unbiased, minimum-variance
estimates;

< This ignores the bias-variance tradeoffs inherent in parameter
estimates from finite samples;

< We have no idea what large . asymptotic means in functional
neuroimaging;

< There are better signal detectors than ML estimates that are
asymptotically-biased but have smaller parameter variance;

< In real, finite data sets there is a bias-variance tradeoff to
be considered, even for the t-test!




Is the 7-test efficient?
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(See: Lukic AS, Wernick MN, Strother SC. An evaluation of methods for detecting brain
activations from PET or fMRI images. A.l. Medicine (Invited paper, in press))
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The NPAIRS Framework

B Uses split-half resampling to provide:

< measurements of prediction (generalization) error and SPM
pattern reproducibility (reliability);

< uncorrelated signal and noise SPMs from any data analysis model;
< areproducible SPM (rSPM) on a common statistical Z-score scale;

< implicitly includes random observation effects, e.g., subjects, runs;
< a measure of individual observation influence.

< N  Nonparametric
<P Prediction

< A  Activation

g | Influence

<R Reproducibility
<S reSampling




The NPAIRS Framework

® The development and application of the NPAIRS
framework 1s described in the following papers:

< Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Siditis J,
Frutiger S, Muley S, LaConte S, Rottenberg D. The quantltatlve
evaluation of functional neuroimaging experiments: The NPAIRS data
analysis framework. Neuroimage (in press).

< Kjems U, Hansen LK, Anderson J, Frutiger SA, Sidtis JJ, Rottenberg D,
Strother SC. The quantitative evaluation of functional neuroimaging
experiments: Mutual information learning curves. Neuroimage (in
press).

< LaConte S, Anderson J, Muley S, Frutiger S, Hansen LK, Yacoub E,
Xiaoping H Rottenberg D, Ashe J Strother SC. Evaluatlng
preprocessing choices in smgle subject BOLD-fMRI studies using data-
driven performance metrics. Neuroimage (submitted).
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NPAIRS: Prediction/Crossvalidation reSampling

Training Set (t)

Prediction Metrics in Functional Neuro-
»:i'.ﬁih'.-.m imaging Studies.
¥ Morch N, Hansen LK, Strother SC, Svarer C,
Rottenberg DA, Lautrup B, Savoy R, Paulson OB.
Nonlinear versus linear models in functional
neuroimaging: Learning curves and generalization
crossover. In: Duncan J, Gindi G, eds: Lecture Notes

est Sef (f in Computer Science 1230: Information Processing in
' Medical Imaging. Springer-Verlag, 1997, 259-270.

—_

Model (0)
Parameters

Data Set

Hansen LK, Larsen J, Niclsen FA, Strother SC,
Rostrup E, Savoy R, Lange N, Sidtis J, Svarer C,
Paulson OB. Generalizable patterns in neuroimaging:
How many principal components?. Neuroimage,
9:534-544, 1999.

Kustra R, Strother SC. Penalized discriminant
analysis of [°O]water PET brain images with
prediction error selection of smoothing and
regularization hyperparameters. I[EEE Trans Med Img
rediction Error Estimate 20:376-387, 2001.

Predicted “Design” Matrix




A Flexible Multivariate Framework
for NPAIRS

m Canonical Variates Analysis (Mardia et al., 1979):

< Closely related to Linear Discriminant Analysis, Canonical
Correlation Analysis and Partial Least Squares;

< Maximises the multivariate signal-to-noise ratio of (Between-
Group)/(Pooled Within-Group) covariance;

< Provides approximate correction for random subject effects;
< Efficiently detects mean AND spatial interaction signals;
< Easily vary model complexity.
— utilizing experimental state-driven or data-driven group structures;

— preprocessing with different types/numbers of basis functions.
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Experimental- vs. Data-Driven Analysis

Data-Driven Group Structure
Subject 1 Subject P




Predicting the Brain State with CVA

te’
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® [dentifies the regions needed to explain systematic variations between
scans by linearly combining with a new scan to predict the experimental

state of the brain, i.e. the group of the new test scan. _
® The probability of predicting the group, g, of a new scan p(g(”‘ Eé) ; etr)

® [s a weighted, multivariate Gaussian distribution éexp«[ ; 2}p(gm)

B Dependent on the Euclidean distance H Hz

< Between the training group mean and the new scan ( D X(é’ )

«\T
< Projected onto a set of non-orthogonal canonical eigenimages L, (U )

< With flexibly choosen type and number of basis functions U:r
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NPAIRS: Split-half reSampling to Obtain
Activation-Pattern Reproducibility Metrics

Split-Hal <Similarity
Group 1 Measure>

plit1: {MODEL(S1,2,54,55) < SM > MODEL(S3,56,57,58)} = Reproducibility
plit2: {MODEL(S1,52,85,57) < SM > MODEL(S3,54,56,58)} = Histogram
plit3: {MODEL(S3,95,57,58) < SM > MODEL(S1,52,54,56)}

o AFrequency » » ,

Similarity Measure,

plit 34: {MODEL(S1,52,5S7,S8) < SM > MODEL(S3,54,55,56)} e.g., Correlation Coefficient (r)

For 8 subjects {S1, ..., S8} each of 35 splits creates two groups of 4
subjects from which any model produces two independent SPMs for

comparison.




NPAIRS: Reproducibility Metrics in
Functional Neuroimaging Studies

Strother SC, Lange N, Anderson JR, Schaper KA, Rehm K, Hansen LK, Rottenberg DA.
Activation pattern reproducibility: Measuring the effects of group size and data analysis models.
Hum Brain Mapp, 5:312-316, 1997.

Strother SC, Rehm K, Lange N, Anderson JR, Schaper KA, Hansen LK, Rottenberg DA.
Measuring activation pattern reproducibility using resampling techniques. In: Quantitative
functional brain imaging with Positron Emission Tomography. (Carson RE, Daube-Witherspoon
ME, Herscovitch P, eds.), Academic Press, San Diego, pp. 241-246, 1998.

Tegeler C, Strother SC, Anderson JR, Kim S-G. Reproducibility of BOLD-based functional MRI
obtained at 4T. Hum Brain Mapp, 7:267-283, 1999.

Frutiger S, Strother SC, Anderson JR, Sidtis JJ, Arnold JB, Rottenberg DA. Multivariate
predictive relationship between kinematic and functional activation patterns in a PET study of
visuomotor learning. Neuroimage 12:515-527, 2000.

Muley SA, Strother SC, Ashe J, Frutiger SA, Anderson JR, Sidtis JJ, Rottenberg DA. Effects of
changes in experlmental demgn on PET studies of isometric force. Neurmmage 13:185-195,
2001.

Shaw M, Strother SC, McFarlane AC, Morris P, Anderson J, Clark CR, Egan GF. Abnormal
functional connectivity in post-traumatic stress disorder. Neuroimage (in press).
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NPAIRS: Z-Scored, Reproducing SPM (rfSPM(Z))
for Independent, NonReproducing SPMs
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PCA of scatter-plot correlation matrix:




NPAIRS: Z-Scored, Reproducing SPM (rSPM(Z))
for Independent, Reproducing SPMs
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Twelve PET Data Sets

m 12 PET data-analysis sets (8-subjects/set) performing 11 tasks:

< 3 Speech tasks:
o Syllable production, SP-PA
o Lip closure, SP-LC
o Sustained phonation, SP-PH
< 2 Figure tracing tasks:
o Standard tracing, TR
o Standard tracing followed by mirrored tracing, MT
< 3 Finger movement tasks with auditory pacing:
o Finger opposition at 1 Hz, FO
o Finger tapping, low amplitude, parametrically varied 0-3 Hz, FT-LO
o Finger tapping, high amplitude, parametrically varied 0-3 Hz, FT-HI
< 2 Parametricaly varied static force tasks with visual feedback:
o Alternating control-force design, SF2
o Randomized block design, SF3
< [ Target interception (circular moving target within an annular path):
o Contrast reaction type (button push vs. joystick) independent of speed, TG-RE
o Contrast speed (fast vs. slow) independent of reaction type, TG-SP




NPAIRS: Reproducibility Histograms for
Twelve PET Tasks
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(See: Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Siditis J, Frutiger S, Muley S,
LaConte S, Rottenberg D. The quantitative evaluation of functional neuroimaging experiments: The
NPAIRS data analysis framework. Neuroimage (in press))
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Within-Subject fMRI Comparisons

(LaConte et al., Neuroimage, 2002 (submitted))

< Sixteen subjects with 2 runs/subject

< Acquisition:
— Whole-brain, 1.5T BOLD-EPI;
— 30 slices = 1 whole-brain scan,;
— 1 oblique slice = 3.44 x 3.44 x 5 mm’;
— TR/TE =4000 ms/70 ms

< Experimental Design:
— Parametric static isometric force (sf);
— Run: [5x (b, ..., by, st#,, ..., sf#;,), b,, ..., b;;] =121 scans;
o sf1=200g, sf2=400g, sf3=600g, sf4=800g, sf5=1000g.
< Analyzed with PCA and Penalized CVA (Kustra &
Strother, IEEE TMI, 20:376-387, 2001):
— 22-group and 2-group analyses;
— Dropped initial non-equilibrium and state-transition scans.




PCA Preprocessing for Two-Run Static Force

50 100 150 200 250 50 100 150 200
scan scan

_ percentvariance = 7.2 (11.0%) ___percent variance = 5.2 (7.6%)

100 150 200 250 0 50 100 150 200 250
scan scan
_percent variance = 2.8 (4.4%)
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fMRI Static Force: Exploratory CVA for
Three Subjects
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D Example Class Assignments for a Twenty-Two-Class
CVA Using Both Experimental Runs
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Preprocessing for Two-Run Static Force

< All runs/subject(s) passed initial quality control:
— movement (AIR 3) <1 voxel;
— no artifacts in functional or structural scans;
— no obvious outliers in PCA of centered data matrix.

< Within-Subject Alignment:
— None;
— Across runs using AIR 3.08 to 1st scan of run one.
< Temporal Detrending using GLM Cosine Basis (a la SPM):
— DTO: None;
— DTL: 0.5-cosine/run;
— DTH: 0.5, 1.0, 1.5 and 2.0 cosines/run.
< Spatial Smoothing with 2D Gaussian:

— GSO0: None;
— GSL: FWHM = 1.5 voxels = 0.52 mm,;
— GSH: FWHM = 6 voxels =21 mm.
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Multi-Subject Prediction Accuracy vs Reproducibility

1. A Classic Bias-Variance Tradeoff.
As model complexity increases
(#PCs 10 6 100) prediction of design
matrix’s class labels improves and
reproducibility (i.e., activation SNR)
decreases.

=4
@

2. Optimizing Performance.

Like an ROC plot there is a single
point, (1, 1), on this prediction vs.
reproducibility plot with the best
performance; at this location the
model has perfectly predicted the
design matrix while extracting an 4
SNR.

&
=
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mean pred ction accuracy




Single-Subject Prediction Accuracy vs. Reproducibility

© 2001, S. Strother

Mean Prediction
VS.
Reproducibility

Canonical Variable |

percent varianee = 24,1
R
A Armmga o oa
T
LRY. LT




The NPAIRS Framework

m Provides a framework for determining the spatio-temporal
structure that “best” describes the variation among experimental
brain states.

® Provides a non-parametric approach for maximizing the SNR of
spatial activation patterns (i.e., their reproducibility) while
allowing for random effects and controlling for model
generalization ability.

B Provides a data-driven alternative to “true simulations’ for ROC
curves.

® May be readily applied within and between subjects, laboratories,
modalities and tasks.

m Benefits are:

< “semi-orthogonal” scales for quantitatively ranking experimental and methodological
choices within and between different classes of models.

< experimental and methodological optimization is no longer strongly dependent on
particular data analytic model assumptions.

< replaces result validity based only on inferential p-values and neuroscientific
expectations. © 2001, S. Strother




